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Abstract

We generalize Dawid’s notion of calibration for more general selection rules.
Also, we extend Kakade and Foster’s algorithm for arbitrary real valued out-
comes and for this modified notion of calibration. Upper bounds for rate of
convergence of calibrated forecasts are presented.

1 Introduction

Predicting sequences is the key problem of machine learning and statistics. The
learning process proceeds as follows: observing a finite-state sequence given on-line
a forecaster assigns an subjective estimate to future states.

A minimal requirement for testing any prediction algorithm is that it should be
calibrated (see Dawid [2]). Dawid gave an informal explanation of calibration for
binary outcomes as follows. Let a binary sequence ω1, ω2, . . . , ωn−1 of outcomes be
observed by a forecaster whose task is to give a probability pn of a future event
ωn = 1. In a typical example, pn is interpreted as a probability that it will rain.
Forecaster is said to be well-calibrated if it rains as often as he leads us to expect.
It should rain about 80% of the days for which pn = 0.8, and so on.

A more precise definition is as follows. Let I(p) denote the characteristic function
of a subinterval I ⊆ [0, 1], i.e., I(p) = 1 if p ∈ I, and I(p) = 0, otherwise. We call
such a function an indicator function. An infinite sequence of forecasts p1, p2, . . . is
calibrated for an infinite binary sequence of outcomes ω1ω2 . . . if for characteristic
function I(p) of any subinterval of [0, 1] the calibration error tends to zero, i.e.,∑n

i=1 I(pi)(ωi − pi)∑n
i=1 I(pi)

→ 0

as the denominator of the relation (1) tends to infinity.
The indicator function I(pi) determines some “selection rule” which selects in-

dices i where we compute the deviation between forecasts pi and outcomes ωi.
If the weather acts adversatively, then Oakes [6] and Dawid [3] show that any

deterministic forecasting algorithm will not always be calibrated.
Foster and Vohra [4] show that calibration is almost surely guaranteed with a

randomizing forecasting rule, i.e., where the forecasts pi are chosen using internal
randomization and the forecasts are hidden from the weather until weather makes
its decision whether to rain or not.

Kakade and Foster [5] presented “an almost deterministic” randomized rounding
universal forecasting algorithm. For any sequence of outcomes and for any precision
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of rounding ∆ > 0, an observer can simply randomly round the deterministic forecast
pi up to ∆ in order to calibrate for this sequence with probability one :

lim sup
n→∞

1

n

n∑
i=1

I(p̃i)(ωi − p̃i) ≤ ∆, (1)

where p̃i is a random forecast. This algorithm can be easily extended such that the
calibration error tends to zero as n→∞.

The goal of this paper is to extend Kakade and Foster’s algorithm to arbitrary
real valued outcomes ωi ∈ [0, 1] and to a more general notion of calibration with
changing selection rules. A closely related approach for forecast continuous super-
martingales is presented in Vovk [7]. We present also convergence bounds depending
on the number of parameters.

2 Main result

Let y1, y2, . . . be an infinite sequence of real numbers. An infinite sequence of random
variables ỹ1, ỹ2, . . . is called a randomization of y1, y2, . . . if En(ỹn) = yn for all n,
where En is the symbol of mathematical expectation.

Computing forecasts, we can use a side information, or signals, x̄1, x̄2, . . . given
online: for any n, a k-dimensional vector x̄n ∈ [0, 1]k is given to a forecaster before he
announces his forecast p̃n. We consider selection rules of a general type – indicator
functions I(p, x̄), where p ∈ [0, 1] and x̄ ∈ [0, 1]k.

An example of such indicator function useful for financial applications is

I(pi, ωi−1) =

{
1, if pi > ωi−1 + ε,
0, otherwise.

Here k = 1, ε > 0, and xi = ωi−1 is the past outcome.

Theorem 1 Given k an algorithm f for computing forecasts and a method of ran-
domization can be constructed such that for any sequence of real numbers ω1, ω2, . . .
and for any sequence of k-dimensional signals x̄1, x̄2, . . . the event

lim
n→∞

1

n

n∑
i=1

I(p̃i, x̃i)(ωi − p̃i) = 0, (2)

has Pr-probability 1, where Pr is a probability distribution generated by a sequence
of tuples (p̃i, x̃i) of random variables, i = 1, 2, . . ., and I is an arbitrary indicator
function. Here p̃i is the randomization of a forecast pi computed by the forecasting
algorithm f and x̃i is obtained by independent randomization of each coordinate xi,j
of the vector x̄i, j = 1, . . . k. Also Varn(p̃n) → 0 and Varn(x̃i,j) → 0 as to n → ∞
for all i and j. 1

Proof. We modify a weak calibration algorithm of Kakade and Foster [5] using also
ideas from Vovk [7]. At first, we construct an ∆-calibrated forecasting algorithm,
and after that we apply some double trick argument for it. We prove that given k an
algorithm for computing forecasts and a method of randomization can be constructed
such that for any sequence of real numbers ω, ω2, . . . and for any sequence of k-
dimensional signals x̄1, x̄2, . . . the event

lim sup
n→∞

1

n

n∑
i=1

I(p̃i, x̃i)(ωi − p̃i) ≤ ∆

1Varn(p̃n) = En(p̃n − pn)
2.
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has Pr-probability 1, where Pr and I is an arbitrary indicator function. Also
Varn(p̃n) ≤ ∆ and Varn(x̃i,j) ≤ ∆ for all n, for all i and j.

At first we define a deterministic forecast and after that we randomize it.
Divide the interval [0, 1] on subintervals of length ∆ = 1/K with rational end-

points vi = i∆, where i = 0, 1, . . . ,K. Let V denotes the set of these points.
Any number p ∈ [0, 1] can be represented as a linear combination of two neigh-

boring endpoints of V defining subinterval containing p : p =
∑
v∈V

wv(p)v =

wvi−1(p)vi−1 + wvi(p)vi, where p ∈ [vi−1, vi], i = bp1/∆ + 1c, wvi−1(p) = 1 − (p −
vi−1)/∆, and wvi(p) = 1− (vi − p)/∆. Define wv(p) = 0 for all other v ∈ V .

In that follows we round some deterministic forecast pn to vi−1 with probability
wvi−1(pn) and to vi with probability wvi(pn). We also round the each coordinate
xn,s, s = 1, . . . k, of a signal x̄n to vjs−1 with probability wvjs−1(xn,s) and to vjs with
probability wvjs (xn,s), where xn,s ∈ [vjs−1, vjs ].

Let also Wv(Qn) = wv1(pn)wv2(x̄n), where v = (v1, v2), v1 ∈ V , v2 =
(v2

1, . . . v
2
k) ∈ V k, wv2(x̄n) =

∏k
s=1wv2s

(xn,s), and Qn = (pn, x̄n). For any Qn,

Wv(Qn) is a probability distribution in V k+1 :
∑

v∈V k+1

Wv(Qn) = 1.

In that follows we define a deterministic forecast pn. Let the forecasts
p1, . . . , pn−1 already defined (put p1 = 1/2). Let us define for v = (v1, v2) and
Qi = (pi, x̄i)

µn−1(v) =
n−1∑
i=1

Wv(Qi)(ωi − pi).

We have

(µn(v))2 = (µn−1(v))2 +

+2Wv(Qn)µn−1(v)(ωn − pn) + (Wv(Qn))2(ωn − p1
n)2. (3)

Summing (3) by v ∈ V k+1, we obtain:∑
v∈V k+1

(µn(v))2 =
∑

v∈V k+1

(µn−1(v))2 +

+2(ωn − pn)
∑

v∈V k+1

Wv(Qn)µn−1(v) +
∑

v∈V k+1

(Wv(Qn))2(ωn − pn)2. (4)

Change the order of summation:

∑
v∈V k+1

Wv(Qn)µn−1(v) =
∑

v∈V k+1

Wv(Qn)
n−1∑
i=1

Wv(Qi)(ωi − pi) =

=
n−1∑
i=1

(
∑

v∈V k+1

Wv(Qn)Wv(Qi))(ωi − pi) =

=
n−1∑
i=1

(W̄ (Qn) · W̄ (Qi))(ωi − pi) =
n−1∑
i=1

K(Qn, Qi)(ωi − pi),

where W̄ (Qn) = (Wv(Qn) : v ∈ V k+1), W̄ (Qn) = (Wv(Qn) : v ∈ V k+1) be vectors
of probabilities of rounding. The dot product of corresponding vectors defines the
kernel

K(Qn, Qi) = K(pn, x̄n, pi, x̄i) = (W̄ (Qn) · W̄ (Qi)). (5)

Let pn be equal to the root of the equation

Sn(pn) =
∑
v∈V

Wv(pn, x̄n)µn−1(v) =
n−1∑
i=1

K(pn, x̄n, pi, x̄i)(ωi − pi) = 0, (6)
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if a solution exists. Otherwise, if the left hand-side of the equation (6) (which is a
continuous by pn function) strictly positive for all pn define pn = 1, define pn = 0 if
it is strictly negative. Announce pn as a deterministic forecast.

The third term of (4) is upper bounded by 1. Indeed, since |ωi−pi| ≤ 1 for all i,∑
v∈V k+1

(Wv(Qn))2(ωi − pn)2 ≤
∑

v∈V k+1

Wv(Qn) = 1.

Then by (4),
∑

v∈V k+1

(µn(v))2 ≤ n. Recall that for any v ∈ V k+1

µn(v) =
n∑

i=1

Wv(Qi)(ωi − pi). (7)

Insert the term I(v) in the sum (7), where I is an arbitrary indicator function and
v ∈ [0, 1]k+1, sum by v ∈ V k+1, and exchange the order of summation. Using
Cauchy–Schwartz inequality for vectors (I(v) : v ∈ V k+1), (µn(v) : v ∈ V k+1) and
Euclidian norm, we obtain ∣∣∣∣∣∣

n∑
i=1

∑
v∈V k+1

Wv(Qi)I(v)(ωi − pi)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

v∈V k+1

I(v)
n∑

i=1

Wv(Qi)(ωi − pi)

∣∣∣∣∣∣ ≤
≤
√ ∑

v∈V k+1

I(v)
√ ∑

v∈V k+1

(µn(v))2 ≤
√
|V k+1|n (8)

for all n, where |V k+1| = 1/∆k+1 – is the cardinality of the partition.
Let p̃i be a random variable taking values v ∈ V with probabilities wv(pi) (only

two of them are nonzero). Recall that x̃i is a random variable taking values v ∈ V k

with probabilities wv(x̄i).
Let I be an indicator function of k + 1 arguments. For any i the mathematical

expectation of a random variable I(p̃i, x̃i)(ωi − p̃i) is equal to

E(I(p̃i, x̃i)(ωi − p̃i)) =
∑

v∈V k+1

Wv(Qi)I(v)(ωi − v1), (9)

where v = (v1, v2).
By the strong law of large numbers, for some µn = o(n) (as n → ∞), Pr-

probability of the event∣∣∣∣∣
n∑

i=1

I(p̃i, x̃i)(ωi − p̃i)−
n∑

i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤ µn (10)

tends to 1 as n→∞. A form of of µn will be specified later.
By definition of deterministic forecast∣∣∣∣∣∣

∑
v∈V k+1

Wv(Qi)I(v)(ωi − pi)−
∑

v∈V k+1

Wv(Qi)I(v)(ωi − v1)

∣∣∣∣∣∣ < ∆

for all i, where v = (v1, v2). Summing (9) by i = 1, . . . , n and using the inequality
(8), we obtain ∣∣∣∣∣

n∑
i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ =

=

∣∣∣∣∣∣
n∑

i=1

∑
v∈V k+1

Wv(Qi)I(v)(ωi − v1)

∣∣∣∣∣∣ < ∆n+
√
|V k+1|n (11)
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for all n, where |V k+1| = 1/∆k+1 is the cardinality of the partition.
By (11) and (10) we obtain that Pr-probability of the event∣∣∣∣∣

n∑
i=1

I(p̃i, x̃i)(ωi − p̃i)
∣∣∣∣∣ ≤ ∆n+ µn +

√
n/∆k+1 (12)

tends to 1 as n→∞. In particular, Pr-probability of the event

lim sup
n→∞

∣∣∣∣∣ 1n
n∑

i=1

I(p̃i, x̃i)(ωi − p̃i)
∣∣∣∣∣ ≤ ∆

is equal to 1.
To prove that (2) holds almost surely choose a monotonic sequence of rational

numbers ∆1 > ∆2 > . . . such that ∆s → 0 as s→∞. We also define an increasing
sequence of natural numbers n1 < n2 < . . . For any s, we use on steps ns ≤ n < ns+1

the partition of [0, 1] on subintervals of length ∆s.

We choose ns such that ns ≥
(
k+2

2

)2
∆
−(k+3)
s for all s. 2 Put n0 = 0 and ∆0 = 1.

Also, define the numbers n1, n2, . . . such that the inequality∣∣∣∣∣
n∑

i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤ 4(s+ 1)∆sn (13)

holds for all ns ≤ n ≤ ns+1 and for all s.
We define this sequence by mathematical induction on s. Suppose that ns (s ≥ 1)

is defined such that the inequality∣∣∣∣∣
n∑

i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤ 4s∆s−1n (14)

holds for all ns−1 ≤ n ≤ ns, and the inequality∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤ 4s∆sns (15)

also holds. Let us define ns+1. Consider all forecasts p̃i defined by the algorithm
given above for discretization ∆ = ∆s+1. We do not use first ns of these forecasts
(more correctly we will use them only in bounds (16) and (17); denote these forecasts
p̂1, . . . , p̂ns). We add the forecasts p̃i for i > ns to the forecasts defined before this
step of induction (for ns). Let ns+1 be such that the inequality∣∣∣∣∣

ns+1∑
i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤

∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣+

+

∣∣∣∣∣∣
ns+1∑

i=ns+1

E(I(p̃i, x̃i)(ωi − p̃i)) +
ns∑
i=1

E(I(p̂i, x̃i)(ωi − p̂i))

∣∣∣∣∣∣+
+

∣∣∣∣∣
ns∑
i=1

E(I(p̂i, x̃i)(ωi − p̂i))

∣∣∣∣∣ ≤ 4(s+ 1)∆s+1ns+1 (16)

holds. Here the first sum of the right-hand side of the inequality (16) is bounded by
4s∆sns – by the induction hypothesis (15). The second and third sums are bounded

2This is the minimum point of (11).
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by 2∆s+1ns+1 and by 2∆s+1ns, respectively. This follows from (11) and by choice
of ns. The induction hypothesis (15) is valid for

ns+1 ≥
2s∆s + ∆s+1

∆s+1(2s+ 1)
ns.

Analogously, ∣∣∣∣∣
n∑

i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤

∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣+

+

∣∣∣∣∣∣
n∑

i=ns+1

E(I(p̃i, x̃i)(ωi − p̃i)) +
ns∑
i=1

E(I(p̂i, x̃i)(ωi − p̂i))

∣∣∣∣∣∣+
+

∣∣∣∣∣
ns∑
i=1

E(I(p̂i, x̃i)(ωi − p̂i))

∣∣∣∣∣ ≤ 4(s+ 1)∆sn (17)

for ns < n ≤ ns+1. Here the first sum of the right-hand inequality (16) is also
bounded by 4s∆sns ≤ 4s∆sn – by the induction hypothesis (15). The second and the
third sums are bounded by 2∆s+1n ≤ 2∆sn and by 2∆s+1ns ≤ 2∆sn, respectively.
This follows from (11) and from choice of ∆s. The induction hypothesis (14) is valid.

By (13) for any s∣∣∣∣∣
n∑

i=1

E(I(p̃i, x̃i)(ωi − p̃i))
∣∣∣∣∣ ≤ 4(s+ 1)∆sn (18)

for all n ≥ ns if ∆s satisfies the condition ∆s+1 ≤ ∆s(1− 1
s+2) for all s.

By the law of large numbers (22), the relation (10) can be specified:

Pr

{
sup
n≥ns

∣∣∣∣∣ 1n
n∑

i=1

Vi

∣∣∣∣∣ > ∆s

}
≤ (∆s)

−2e−2ns∆2
s (19)

for all s, where Vi = I(p̃i, x̃i)(ωi − p̃i) − E(I(p̃i, x̃i)(ωi − p̃i)) is a sequence of
martingale–differences.

Combining (18) with (19), we obtain

Pr

{
sup
n≥ns

∣∣∣∣∣ 1n
n∑

i=1

I(p̃i, x̃i)(ωi − p̃i)
∣∣∣∣∣ ≥ (4s+ 5)∆s

}
≤ (∆s)

−2e−2ns∆2
s (20)

for all s. The series
∑∞

s=1(∆s)
−2e−2ns∆2

s is convergent if ns satisfies

ns ≥
ln s+ 2 ln ln s− 2 ln(∆s)

2∆2
s

for all s. Let also ∆s = o(1/s) as s → ∞. Then Borel–Cantelli Lemma implies
convergence of (2) almost surely.

It is easy to verify that the sequences ns and ∆s satisfying all the conditions
above exist.

Let us specify details of rounding. The expression ∆n +
√
n/∆k+1 from (12)

takes its minimal value for ∆ = (k+1
2 )

2
k+3n−

1
k+3 . In this case, the right-hand side of

the inequality (11) is equal to ∆n+
√
n/∆k+1 = 2∆n = 2(k+1

2 )
2

k+3n1− 1
k+3 .

For example, for k = 1, we use at any step n the rounding ∆s = n
−1/4
s , where s

is such that ns < n ≤ ns+1.
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We write A ∼ B if positive constants c1 and c2 exist such that c1B ≤ A ≤ c2B
for all values of parameters from the expressions A and B.

Define ns = sM and ∆s = s−M/4, where M is a positive integer number. Then

s ∼ n1/M
s (the constants c1 and c2 depend on M).

Easy to verify that all requirements for ns and ∆s given in Section 2 are valid.
By (20) we can define µn = (4s + 5)∆sn, where s is such that ns < n ≤ ns+1.

For ns < n ≤ ns+1 it holds n ∼ ns, hence, µn ∼ n3/4+1/M .

A Large deviation inequality for martingales

A sequence V1, V2, . . . is called martingale-difference with respect to a sequence of
random variables X1, X2, . . . if for any i > 1 the random variable Vi is a function of
X1, . . . , Xi and E(Vi+1|X1, . . . , Xi) = 0 almost surely. The following inequalities
are corollaries of Hoffding-Azuma inequality [1]:

Let V1, V2, . . . be a martingale–difference with respect to X1, X2, . . ., and Vi ∈
[Ai, Ai + 1] for some random variable Ai measurable with respect to X1, . . . , Xi.

Let Sn =
n∑

i=1
Vi. Then for any t > 0

P

{∣∣∣∣Snn
∣∣∣∣ > t

}
≤ 2e−2nt2 (21)

for all n. A strong law of large numbers is also holds: for any t

P

{
sup
k≥n

∣∣∣∣Skk
∣∣∣∣ > t

}
≤ t−2e−2nt2 (22)

for all n. Since the series of the exponents from the right-hand side of the inequality
(21) convergent, by Borel–Cantelli Lemma we obtain the martingale strong law of
large numbers

P

{
lim
n→∞

Sn
n

= 0

}
= 1.
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